
Introduction to Modern Thermodynamics 
 

1 

Examples 
 

Example 1.1 The atmosphere consists of 78.08% by volume of N2, and 20.95% of O2.  Calculate the 

partial pressures due to the two gases. 
 
 The specification "% by volume" may be interpreted as follows.  If the components of the 
atmosphere were to be separated, at the pressure of 1 atm, the volume occupied by each component is 
specified by the volume %.  Thus, if we isolate the N2 in 1.000 L of dry air, at a pressure of 1 atm its 

volume will be 0.781 L.  According to the ideal gas law, at a fixed pressure and temperature, the amount 
of gas in moles N = V(p/RT), i.e. the amount in moles is proportional to the volume.  Hence percentage 
by volume is the same as percentage in N, i.e. 1.000 moles of air consists of 0.781 moles of N2.  

According to the Dalton's law (see (1.3.5)) the partial pressure is proportional to the N, the partial 
pressure of N2 is 0.781 atm and that of O2 is 0.209 atm. 

 
 
Example 1.2  Using the ideal gas approximation, estimate the change in the total internal energy of 1.00 L 
of N2 at p=2.00 atm and T = 298.15 K, if its temperature is increased by 10.0 K.  What is the energy 
required to heat 1.00 mole of N2 from 0.0 K to 298 K ? 

 
 The energy of an ideal gas depends only on the amount of gas N and the temperature.  For a 
diatomic gas such as N2 the energy per mole equals (5/2)RT+U0.  Hence, for N moles of N2 the change 
in energy ΔU for a change in temperature from T1 to T2 is: 

 
    ΔU = N(5/2)R(T2 – T1) 

 

In the above case N=pV/RT =
2.00atm  x  1.00L

0.0821  L.atm .mol
!1
K
!1
298.15( )

= 8.17x10
!2
mol . 

 

Hence:  
!U = 8.17x10"2mol

5

2
8.314J.mol

"1
.K

"1( ) 10.0K( )

    = 17.0J

 

 (Note the different units of R used in this calculation.) 
The energy required to heat 1.00 mol of N2 from 0 K to 298 K is  

=(5/2)RT=(5/2)(8.314JK-1mol-1)298K=6.10kJ mol-1. 
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Example 1.3  At T=300 K, 1.00 mol of CO2 occupies a volume of 1.50 L.  Calculate the pressures given 

by the ideal gas equation and the van der Waals equation. (The van der Waals constants a and b can be 
obtained from Table 1.1) 
 

Ideal gas pressure  

! 

p =
1.00mol 0.0821atm.L.mol.K"1x300K

1.50L
=16.4atm 

 
The pressure according to van der Waals equation: 
 

    p =
NRT

V !Nb
! a
N2

V
2  

 
Since the van der Waals constants a and b given in Table 1.1 are in units of L2.atm.mol-2 and L.mol-2 
respectively, we will use the value or R=0.0821atm.L.mol-1K-1.  This will give the pressure in atm. 
 

   p =
1.00(0.0821)300

1.50 ! 1.00(0.0421)
! 3.59

1.00

1.50
2 = 15.3atm  
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Exercises 
 
1.1   Describe an experimental method, based on the ideal gas law, to obtain the molecular mass of a gas. 
 

Answer:  By measuring p, V and T of a gas, its mole number can be determined because N=(pV/RT).  If 
a flask of volume V is filled with the given gas of mass m, and if the p and T are its pressure and 
temperature respectively, then the molar mass of the gas 
 

    

! 

M =
m

N
=
mRT

pV
 

 
----------------------------------------------------------------------------- 
 
1.2  The density of dry air at p=1.0 bar and T = 300 K is 1.161 kg/m3.  Assuming that it consists entirely 
of N2 and O2 and using the ideal gas law, determine amount of each gas in moles in a volume of 1m3 and 
their mole fractions. 
 
Answer:  Using the ideal gas law we see that the total amount of gas (N2 plus O2) is equal to: 
 

 

! 

NN 2
+ NO2

= N =
pV

RT
=

1.0bar  "  10
3
L

0.08314(barL /molK)x300K
= 40.09mol   (a) 

The total mass of the two gasses 
 
    

! 

MN 2NN 2 + MO2NO2 = 1.161kg     (b)  
 
in which is the molar masses MN2 =28.01x10-3kg/mol and MO2 =32.00x10-3kg/mol.  Solving the two 
simultaneous equations (a) and (b) for NN2 and NO2, we find: NN2 = 30.55 mol and  NO2 = 9.54 mol.  The 
corresponding mole fractions are xN2 = 0.762 and xO2 = 0.238. 
 
----------------------------------------------------------------------------- 
 
1.3.  The density of interstellar gas clouds is about 104 molecules/mL. The temperature is approximately 
10K.  Calculate the pressure.  (The lowest vacuum obtainable in the lab is about 3 orders of magnitude 
larger.) 

 

Answer: The pressure p=(N/V)RT.  In this case, 

! 

N

V
=
10

4
/N

A

10
"6
m
3

= 1.66x10-14 mol/m3.  Hence the in 

interstellar pressure p=(1.66x10-14mol/m3)x(8.314 m3Pa/molK)x10K=1.38x10-12Pa. 

 
----------------------------------------------------------------------------- 

 
1.4  A sperm whale dives to a depth of more than a 1.5 km into the ocean to feed.  Estimate the pressure 
the sperm whale must withstand at this depth.  (Express your answer in atm). 
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Answers:  At a depth h, the pressure  p = hρg, in which ρ is the liquid density and g = 9.8 m s–2.  The 

density of sea water is about 1027 kg/m3.  Hence the pressure: 
  p = 1.5x103m (1027 kg/m3) (9.8 m s–2) = 1.5x107 Pa. = 149. 5 atm 

( 1.0 atm = 101.3 kPa).  In the oceans, the pressure increases by about 1 atm for every 10 m of depth. 
 
----------------------------------------------------------------------------- 

 
1.5  (a) Calculate the amount of gas in moles per m3 of atmosphere at p=1 atm and T=298 K using the 
ideal gas equation. 
(b) The atmospheric content of CO2 is about 360 ppmv (parts per million by volume).  Assuming a 
pressure of 1.00 atm, estimate the amount of CO2 in 10.0 km layer of the atmosphere at the surface of the 
Earth.  The radius of the Earth is 6370 km. ( The actual amount of CO2 in the atmosphere is about 

6.0x1016 moles). 
(c)  The atmospheric content of O2 is 20.946 % by volume.  Using the result in part (b), estimate the total 
amount of O2 in the atmosphere.   
(d) Life on Earth consumes about 0.47x1016 moles of O2 per year.  What percent of the O2 in the 

atmosphere does life consume in a year? 
Answers:    
(a) Since 1.0 m3 = 103L, the number of moles of gas in 1.0 m3 is: 
 

  

! 

N =
pV

RT
=

1.0atm "  10
3
L

0.0820L.atm.K
#1

.mol
#1
x298

= 40.9mol  

 
(b)  At a given temperature and pressure, the number of moles is proportional to the volume.  Since the 
CO2 is 360 ppm by volume, the number of moles of CO2 per m3 is: 

 
   NCO2 = 40.9 x 360 x10-6 = 0.0147 moles/m3 

 
If RE = 6370x103m is the radius of the earth, the "volume" of the atmosphere in a layer of height h can be 

approximated by: 
 
 4πR2E h = 4x3.141x( 6370x103m)2 (10x103m) = 5.098 x 1018 m3. 

 
 (the exact volume is (4/3)π[(6380x103)3 – (6370x103)3]=5.1061x1018 ) 
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Number of moles of CO2 in this layer =  0.0147 moles/m3 x  5.1 x 1018 m3 

      =  7.4 x 1016 moles. 
( this estimate is larger than the actual value of 6.0x 1016  moles because the pressure decrease with 
height ). 
 
(c)  360 ppm = 3.6x10-4 = 3.6x10-2%.  Since 20.9 % of the atmosphere is O2, the amount of O2 in the 10 

km layer = 

! 

20.9

3.6x10
"2
x7.4x10

16
= 4.3x10

19
mol . 

 
(d)  Since the consumption of O2 by life on the planet is approximately 0.47x1016 mol/year 

the oxygen should last about : 

    

! 

4.3"10
19
mol

0.47x10
16
mol / year

= 9100  years! 

 
 
----------------------------------------------------------------------------- 

 
1.6  The production of fertilizers begins with the Haber processes which is the reaction  
  3 H2 + N2  → 2NH3 conducted at about 500 K and a pressure of about 300 atm.  Assume that this 
reaction occurs in a container of fixed volume and temperature.  If the initial pressure due to 300.0 mol H2  
and 100.0 mol N2 is 300.0 atm, what will the final pressure be ?  What will the final pressure be if initially 
the system contained 240.0 mol H2 and 160.0 mol N2 ? (use the ideal gas equations even though the 
pressures are high) 
 
Answers:  
 Initially there are 400 mol of gas at T=500K and p=300atm.  After the reaction, there are only 
200.0 moles of NH3 .  Since molar amount of gas, N, decreased by a factor of 2, for the same V and T, the 
pressure will also decrease by a factor of 2, i.e. p=150 atm. 
 
 If initially there are 240.0 mol H2 and 160 mol N2, 80 mol of N2 will react with the H2 and 
produce 160 mol NH3 and 80 mol of N2 will remain.  Hence the total number of moles in the volume is 
240 mol.  Thus the number of moles has decreased by a factor (240/400)=3/5.  Hence the presser will also 
decrease by a factor of 3/5, i.e. the final pressure will be (3/5)300.0atm = 180.0 atm 
 
 
----------------------------------------------------------------------------- 
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1.7  The van der Waals constants for N2 are: a= 1.370 L2.atm.mol-2  b= 0.0387 L.mol-1. Consider 0.5 
moles of N2(g) is in a vessel of volume 10.0L.  Assuming that the temperature is 300 K, compare the 

pressures predicted by the ideal gas equation and the van der Waals equation.   
(a) What is the percent error in using the ideal gas equation instead of van der Waals equation? 
(b)  Keeping V= 10.0L, use Maple/Mathematica to plot p vs N for N = 1 to 100, using the ideal gas and 
van der Waals equations.  What do you notice regarding the difference between the pressure predicted by 
the two equations ? 
Answers: 
(a) The pressure predicted by ideal gas equation: 
  p=NRT/V = 1.231 atm. 
       The pressure predicted by van der Waals equation: 
   

  

! 

p =
NRT

V " Nb( )
" a

N
2

V
2

# 

$ 
% 

& 

' 
( = 1.230 atm 

 

  The percent error = 

! 

1.231"1.230

1.230
#100 = 0.08% 

 

Mathematica Code 
 

(* Exc. 1.7(b)*)

 

Clear[a, b, R, T]; 


a = 1.390; b = 0.039; R = 0.0821; T = 300;
 

vwp[N_] := (N*R*T/(10.0 - b*N)) - (a*(N/10.0)^2) 


idp[N_] := N*R*T/10.0

Plot[{vwp[N], idp[N]}, {N, 1, 100}]
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Maple Code  
#Exc 1.7 (b); 
restart; 
 VWP:= N->(0.082*300*N/(10.0-0.0391*N))-1.390*(N/10.0)^2; 
 
                                         N                                   2 
         VWP := N -> 24.600 ----------------      - .01390000000 N 
                                    10.0 - .0391 N 
 
> IDP:= N->0.082*300*N/10.0; 
 
                      IDP := N -> 2.460000000 N 
 
> plot([VWP(N),IDP(N)],N=1..100); 

 

 
 
----------------------------------------------------------------------------- 

 
 
1.8  For 1.00 mol of Cl2 in a volume of 2.50 L, calculate the difference in the energy between Uideal and 
Uvw.  What is the % difference when compared to Uideal ? 

 
Answer: From equation (1.3.11) it follows that: 

 Uideal - Uvw  =  a(N2/V)  = 

! 

6.51L
2
.atm.mol

"2 1.00mol
2

2.50L
=2.60atm.L 

  Note: 1.0 atm.L = (101.3x103 Pa) x (10-3 m3) = 101.3 J 
 Hence: 2.60 atm.L. = 263 J  
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 Uideal  = (5/2)RT = (5/2) (8.314 JK-1)(298K) = 6.19 kJ 

 

 

! 

U
ideal

"U
vw

U
ideal

#100 =
263J

6.19x10
3
J
#100 = 4.2% 

 
----------------------------------------------------------------------------- 

 
1.9   (a) Using the ideal gas equation calculate the volume of one mole of a gas at temperature of 25˚C 
and pressure of 1 atm. This volume is called the Avogadro volume.  
 (b) The atmosphere of Venus is 96.5% CO2(g).  The surface temperature is about 730 K and the pressure 
is about 90 atm.  Using the ideal gas equation calculate the volume of one mole of CO2(g) under these 

conditions (Avogadro volume on Venus).   
(c)  Use Maple/Mathematica and van der Waals equation to obtain the Avogadro volume on Venus and 
compare it (find the % difference) with the result obtained using the ideal gas equation. 
 
 
Answers: 
(a)  Vavgd = RT/P = R*T =( 1.00 mol) (0.0821 atm.L.mol-1.K-1) 298K/1.00atm 

   = 24.5L 
 
(b)  On Venus, Vavgd = ( 1.00 mol) (0.0821 atm.L.mol-1.K-1) 750K/(90.0atm) 

   = 0.684 L 

(c) Mathematica Code 
In[3]:= 

(*Exc. 1.9(c)*) 

Clear[a,b,R,T]; 

a=3.59; b=0.0427;R=0.0821; T=750; 

eq:=(1.0*R*T/(V-1.0*b))-a*(1/V^2)-90 

Solve[eq==0,V] 
 
 
Out[4]= 
{{V -> 0.0278235 - 0.0419929 I},  {V -> 0.0278235 + 0.0419929 I}, {V -> 0.67122}} 
 
 
Since the above equation is a third degree equation, there are 3 roots, two of them being complex.  The 
real root V=0.671L  is the Avogadro volume on Venus. 
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Maple Code: 
> #Exc 1.9(c); 
> restart;R:=0.0821;T:=750;a:=3.59;b:=0.0427; 
> eq:=(1.0*R*T/(V-1.0*b))-a*((1.0/V)^2)=90; 
> solve(eq,V); 
 
                              R := .0821 
 
 
                               T := 750 
 
 
                              a := 3.59 
 
 
                              b := .0427 
 
 
                           61.57500        3.5900 
                    eq := ----------    -  ------ = 90 
                          V - .04270            2 
                                                    V 
 
 
.02782347980 - .04199293909 I, .02782347980 + .04199293909 I, 
 
    .6712197071 
 
Since the above equation is a third degree equation, there are 3 roots, two of them being complex.  The 
real root V=0.671L  is the Avogadro volume on Venus. 

 

 
----------------------------------------------------------------------------- 

 
1.10  The van der Waals parameter b is a measure of the volume excluded due to the finite size of the 
molecules.  Estimate the size of a single molecule from the data in Table 1.1. 
 
Answer:  A crude estimate of the size of the molecule can be obtained by assuming that it is spherical and 
by equating b to the total volume of NA molecules.  For CO2, for example this gives: 

 

  

! 

4

3
"r3N

A
= 0.0427 #10

$3
m
3
.mol

$1   

This gives a radius  r = 2.5x10-10 m. 
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A better estimate is obtained by identifying the "excluded volume" by the finite size of the molecules.  As 
shown in figure bellow, in a gas, each pair of molecules "excludes" a  
 

 
 

volume equal to 

! 

4

3
" 2r( )

3.  Hence the total reduction in the available volume is     

 

! 

4

3
" 2r( )

3 1

2
N

A
= 0.0427 #10 $3

m
3
.mol

$1. 

 
This gives a radius r=1.6x10-10m. 
 
----------------------------------------------------------------------------- 

 
1.11 For the van der Waals equation, express the pressure as a power series in (1/Vm)).  Using this 
expression determine the Boyle Temperature, TB, at which p≈RTB/Vm.  
 
Answer:  For the van der Waals equation 
 

! 

p =
RT

(Vm " b)
"

a

Vm

2  

The factor 1/(Vm – b) can be written as: 

! 

1

V
m

1"
b

V
m

# 

$ 
% 

& 

' 
( 

"1

=
1

V
m

1+
b

V
m

+
b

V
m

) 

* 
+ 

, 

- 
. 

2

+ ...

# 

$ 
% 
% 

& 

' 
( 
( 
 

Substituting this expression in the expression in the expression for p we obtain: 

! 

p =
RT

Vm

+ RTb" a[ ]
1

Vm

2
+
RT

Vm

b

Vm

# 

$ 
% 

& 

' 
( 

2

+
b

Vm

# 

$ 
% 

& 

' 
( 

3

+ ...
) 

* 
+ 
+ 

, 

- 
. 
. 
 

The Boyle temperature, TB, is the temperature at which the coefficient of the term 1/Vm
2 is zero so that to 

the leading approximation, p = RT/Vm.  By setting the coefficient of 1/Vm
2 to zero we obtain: 

    TB = a / bR 

 
----------------------------------------------------------------------------- 
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1.12 For the Redlich-Kwong equation 

! 

p =
RT

Vm " b
"

a

T

1

Vm (Vm " b)
 show that there is a critical point, 

i.e., show that for large T, p does not have an extremum. 
 

Answer: At a fixed T, p has an extemum when 

! 

"p

"Vm

# 

$ 
% 

& 

' 
( 
T

= 0 .  This implies: 

! 

"p

"Vm

# 

$ 
% 

& 

' 
( 
T

=
)RT

Vm ) b( )
2

+
a

T

(2Vm ) b)

Vm

2
(Vm ) b)

2
   (1.12.1) 

 
For large T, the second term becomes much smaller than the first making it impossible for the right hand 
side of the above equation to equal zero.   

Alternatively one can equate the right-hand side of (1.12.1) to zero and look for the solutions 
when T is large.  Equating the right-hand side of (1.12.1) zero we obtain: 

! 

RT
3 / 2
V
m

2
" 2aV

m
+ ab = 0 

Writing the solutions of this quadratic equation, it is easy to see that there are no real solutions when T is 
large. 
 
----------------------------------------------------------------------------- 
 
1.13   Though van der Waals equation was a big improvement over the ideal gas equation, its validity is 
also limited.  Compare following experimental data with the predictions of the van der Waals equation for 
one mole of CO2 at T= 40˚C. (Data source I. Prigogine and R. Defay, "Chemical Thermodynamics". 
1967, London: Longmans. )  
 
 p/ atm Vm/L.mol-1 

 1 25.574 
 10 2.4490 
 25 0.9000 
 50 0.3800 
 80 0.1187 
 100 0.0693 
 200 0.0525 
 500 0.0440 
 1000 0.0400 
 
 
----------------------------------------------------------------------------- 
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1.14 (a) Use Mathematica/Maple to plot the van der Waals p-V curves for Ar, N2 and C3H8 using data 
listed in Table 1.1 (see Appendix 1.3 for sample programs).  In particular, compare the van der Waals 
curves for CO2 and He and the ideal gas equation.   
Mathematica Codes are shown in the Appendix 1.3. 
Maple Code: 
========================================================= 
 
> #  Exc 1.10 Maple code for plotting van der Waals curves for CO2; 
> restart; 
> VWCO2:= (V,T)->(0.0821*T*1.0/(V-0.0427))-3.59*(1.0/(V^2)); 
> ID:=V->0.082*310/V; 
> VWHe:= V->(0.082*310*1.0/(V-0.0237))-0.034*(1.0/V^2); 
> plot([VWCO2(V,310),ID(V),VWHe(V)],V=0.05..0.3, thickness=2); 

 

 
----------------------------------------------------------------------------- 

 
1.15 For CO2, plot the compressibility factor Z=pVm/RT as function of the reduced pressure pr for fixed 
reduced temperatures Tr = 1.2  and Tr=1.7.  Verify that the Z-pr curves are the same for all van der Waals 
gases.  (This can be plotted using  Parametric Plots )   
 
 
 
----------------------------------------------------------------------------- 
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1.16   Using Table 1.1 and the relations (1.5.4) obtain the critical temperature Tc, critical pressure pc and 
critical molar volume Vmc for CO2, H2 and CH4 .  Write a Maple/Mathematica code to calculate the van 
der Waals constants a and b given Tc, pc and Vmc for any gas.  

 
  Gas  TC /K  pC /atm  Vmc /L 
  CO2  303.4  72.9  0.128 
  H2  33.1  12.7  0.0798 
  CH4  189.7  45.5  0.128 

 
Mathematica Code 
========================================================= 
Clear[a,b] 
a=3.59;b=0.0427;R=0.0821; 
T=8*a/(27*R*b) 
p=a/(27*b^2) 

v=3*b 
========================================================= 
 
Maple Code 
========================================================== 
restart; 
> a:=3.59;b:=0.0427;R:=0.0821; 
> T=8*a/(27*R*b); 
> p=a/(27*b^2); 
> v=3*b; 
 
----------------------------------------------------------------------------- 

 
1.17  (a) For the van der Waals equation, using (1.5.2) obtain (1.5.3) and (1.5.4).  (These calculations may 
also be done using Mathematica/Maple).  (b) Show that Zc= (pcVmc/RTc) =3/8  a constant for all gases. 
 
Answer 
(a) For the van der Waals equation: 

    

! 

p =
RT

(Vm " b)
"
a

Vm

2  

At the critical point: 
 

   

! 

"p

"V

# 

$ 
% 

& 

' 
( 
T

=
)RTc
Vmc ) b( )

2
+
2a

Vmc

3
= 0     (1.17.1) 
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! 

" 2p

"V 2

# 

$ 
% 

& 

' 
( 
T

=
2RTc

Vmc ) b( )
3
)
6a

Vmc

4
= 0    (1.17.2) 

 
Solving these two equations for Vmc and Tc we find: 
 
   Vmc =3b  and Tc =8a/27Rb  
 
Substituting these values in the van der Waals equation we get: 
 
   pc = a/27b2. 
 
From these equations, (1.5.3) and (1.5.4) follow. 
 
----------------------------------------------------------------------------- 

 
1.18   Using Mathematica/Maple obtain the equation (1.5.6) from (1.5.5). 

 
Answer 
The Mathematica code is in Appendix 1.2, Code C. 
 
 
Maple Code 
========================================================== 
> #Exc 1.13 
> restart; 
> p:=(T,V)->(R*T/(V-b))-(a/V^2); 
> T:=(Tr*8*a)/(27*b*R); V:=Vr*3*b;pc:=a/(27*b^2); 
> eq:=p(T,V)/pc; 
 
> eq1:=simplify(eq); 
 
> convert(eq1,parfrac,Vr); 
 
                                Tr          3 
                           8 --------   -  --- 
                             3 Vr - 1         2 
                                         Vr 
 
                                

=========================================================== 
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----------------------------------------------------------------------------- 

 
1.19  For CO2, plot p-V isotherms for van der Waals and Redlich-Kwong equations on the same graph for 
T=200K, 300K and 400K.  The table below lists some constants a and b for the Redlich-Kwong equation 
(Source: J.H. Noggle, "Physical Chemistry", 1996, Harper Collins): 
 

 a ( bar L2 /mol K1/2) b (L/mol) 

Ar 16.71 0.0219 

CO2 64.48 0.0296 

O2 17.36 0.0221 

 
 
----------------------------------------------------------------------------- 

 

1.20  Show that Lennards-Jones energy 

! 

ULJ(r) = 4"
#

r

$ 

% 
& 

' 

( 
) 
12

*
#

r

$ 

% 
& 

' 

( 
) 
6+ 

, 
- 

. 

/ 
0  has a minimum value equal to –ε at  

r=21/6σ . 

 
 
Answer 
 The value of r at which U takes its the minimum value can be obtained by solving the equation: 
 

 

! 

"U
LJ
(r)

"r
= 0 .  Evaluating the derivative, we obtain: 

 

  

! 

"U
LJ
(r)

"r
= 4#

$12%12

r
13

+
6% 6

r
7

& 

' 
( 

) 

* 
+ = 0  

Which can be simplified to: 

   

! 

"12
# 6

r
6

+ 6 = 0 .  That is 

! 

r = 2
1/ 6" . 

Substituting 

! 

r = 2
1/ 6"  into th expression for we see: 

 

! 

"U
LJ
(r)

"r
= 4#

1

2
1/ 6

$ 

% 
& 

' 

( 
) 
12

*
1

2
1/ 6

$ 

% 
& 

' 

( 
) 
6+ 

, 
- 

. 

/ 
0 = *4#

1

4
= *#  

 
 
----------------------------------------------------------------------------- 
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1.21 . Estimate the average distance between molecules at T=300K and p=1.0atm.  (Hint: Consider a cube 
of side 10 cm in which the molecules occupy points on a 3-dimensional cubic lattice) 
 
Answer 
 At p =1.0 atm and T = 300K, in volume of 1.0L there the amount of gas can be calculated: 
 

  

! 

N =
pV

RT
=

1.0atm  1.0L

0.0821
atm.L

molK
 300K

= 0.0406mol  

Let us assume, 0.0406NA molecules to be in a cube of side 10.0 cm, arranged in an 3D array with n 
molecules along each side of the cube.  Then n3 = 0.0406NA = 0.0406 (6.023x1023).  Hence 
     

n = [0.0406 (6.023x1023)]1/3 = 2.89 x 106. 
The distance between the molecules is : 10 cm/2.89 x 106  = 3.4 x 10-7 cm = 3.4 nm = 34 Å . 
 
----------------------------------------------------------------------------- 
 
 
1.22  According to the Graham’s law of diffusion, the rate of diffusion of gas molecules is inversely 
proportional to the square root of its mass.  Explain why this is so using the kinetic theory of gases.  How 
would you expect the diffusion coefficient to depend on the temperature?  
 
Answer 
 Diffusion is a consequence of random motion of molecules.  Hence, the rate at which molecules 
diffuse can be expected to be proportional to the average speed of molecules.  We have seen that the 
average kinetic energy of a molecule: 
  
    <mv2/2> = (3/2) kT 
 
From this it follows that  

! 

< v
2

> = 3kT /m .  Hence, we may surmise that the average speed is 
inversely proportional to the square root of the molecule’s mass.  This explains Graham’s law.  From this 
expression it is also clear that the rate of  diffusion is proportional to the square root of the temperature T. 
 
----------------------------------------------------------------------------- 
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1.23 (a) Using the integrals in Appendix 1.2, obtain the average speed (1.6.19) and kinetic energy (1.6.20) 
of a gas molecule. 
       (b)  Using the Maxwell probability distribution f(v), obtain the most probable speed of a molecule of 
molar mass M at a temperature T. 
 
 
Answer 
 
 (a) The average speed is given by the integral: 
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.  The integral can be evaluated using the integral (d) in the 

appendix: 
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(b)   The Maxwell probability distribution (1.6.15):  
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f (v)dv = 4"
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The most probable velocity is the one at which f(v) reaches its maximum value. At its maximum value the 

derivative of the function 

! 

f (v) = 4"
m

2"kBT
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e
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v
2 must equal zero.  Setting the derivative of f(v) to 

zero we obtain: 
    

! 

"#2ve"#v
2

v
2

+ 2ve
"#v 2

= 0  
 
 Solving for v we obtain:   

! 

v
2

=1/" = 2k
B
T /m .  Hence when v satisfies this equation, the 

function f(v) reaches its maximum value, i.e. the most probable velocity 

! 

v = 2k
B
T /m . 

    

! 

 


